Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.587
Filtrar
1.
Dalton Trans ; 53(12): 5616-5623, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38439632

RESUMO

The chemokine receptor CXCR4 is implicated in multiple diseases including inflammatory disorders, cancer growth and metastasis, and HIV/AIDS. CXCR4 targeting has been evaluated in treating cancer metastasis and therapy resistance. Cyclam derivatives, most notably AMD3100 (Plerixafor™), are a common motif in small molecule CXCR4 antagonists. However, AMD3100 has not been shown to be effective in cancer treatment as an individual agent. Configurational restriction and transition metal complex formation increases receptor binding affinity and residence time. In the present study, we have synthesized novel trans-IV locked cyclam-based CXCR4 inhibitors, a previously unexploited configuration, and demonstrated their higher affinity for CXCR4 binding and CXCL12-mediated signaling inhibition compared to AMD3100. These results pave the way for even more potent CXCR4 inhibitors that may provide significant efficacy in cancer therapy.


Assuntos
Complexos de Coordenação , Ciclamos , Compostos Heterocíclicos , Benzilaminas , Complexos de Coordenação/farmacologia , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/química , Receptores CXCR4/antagonistas & inibidores
2.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(1): 37-45, 2024 Feb 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38475949

RESUMO

OBJECTIVES: This study aimed to investigate the effects of sitagliptin on the proliferation, apoptosis, inflammation, and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) in lipopolysaccharide (LPS)-induced inflammatory microenvironment and its molecular mechanism. METHODS: hPDLSCs were cultured in vitro and treated with different concentrations of sitagliptin to detect cell viability and subsequently determine the experimental concentration of sitagliptin. An hPDLSCs inflammation model was established after 24 h of stimulation with 1 µg/mL LPS and divided into blank, control, low-concentration sitagliptin (0.5 µmol/L), medium-concentration sitagliptin (1 µmol/L), and high-concentration sitagliptin (2 µmol/L), high-concentrationsitagliptin+stromal cell derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) pathway inhibitor (AMD3100) (2 µmol/L+10 µg/mL) groups. A cell-counting kit-8 was used to detect the proliferation activity of hPDLSCs after 24, 48, and 72 h culture. The apoptosis of hPDLSCs cultured for 72 h was detected by flow cytometry. After inducing osteogenic differentiation for 21 days, alizarin red staining was used to detect the osteogenic differentiation ability of hPDLSCs. The alkaline phosphatase (ALP) activity in hPDLSCs was determined using a kit. The levels of inflammatory factors [tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6] in the supernatant of hPDLSCs culture were detected by enzyme-linked immunosorbent assay. The mRNA expressions of osteogenic differentiation genes [Runt-associated transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN)], SDF-1 and CXCR4 in hPDLSCs were detected by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). Western blot analysis was used to determine SDF-1 and CXCR4 protein expression in hPDLSCs. RESULTS: Compared with the blank group, the proliferative activity, number of mineralized nodules, staining intensity, ALP activity, and RUNX2, OCN, OPN mRNA, SDF-1, and CXCR4 mRNA and protein expression levels of hPDLSCs in the control group significantly decreased. The apoptosis rate and levels of TNF-α, IL-1ß, and IL-6 significantly increased (P<0.05). Compared with the control group, the proliferative activity, number of mineralized nodule, staining intensity, ALP activity, and RUNX2, OCN, OPN mRNA, SDF-1, and CXCR4 mRNA and protein expression levels of hPDLSCs in low-, medium-, and high-concentration sitagliptin groups increased. The apoptosis rate and levels of TNF-α, IL-1ß, and IL-6 decreased (P<0.05). AMD3100 partially reversed the effect of high-concentration sitagliptin on LPS-induced hPDLSCs (P<0.05). CONCLUSIONS: Sitagliptin may promote the proliferation and osteogenic differentiation of hPDLSCs in LPS-induced inflammatory microenvironment by activating the SDF-1/CXCR4 signaling pathway. Furthermore, it inhibited the apoptosis and inflammatory response of hPDLSCs.


Assuntos
Benzilaminas , Ciclamos , Lipopolissacarídeos , Ligamento Periodontal , Humanos , Ligamento Periodontal/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Receptores CXCR4/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Osteogênese , Transdução de Sinais , Inflamação/metabolismo , Células-Tronco , RNA Mensageiro/metabolismo , Apoptose , Proliferação de Células , Células Estromais/metabolismo , Diferenciação Celular , Células Cultivadas
3.
Acta Biomater ; 177: 414-430, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360292

RESUMO

The limited therapeutic efficacy of checkpoint blockade immunotherapy against glioblastoma is closely related to the blood-brain barrier (BBB) and tumor immunosuppressive microenvironment, where the latter is driven primarily by tumor-associated myeloid cells (TAMCs). Targeting the C-X-C motif chemokine ligand-12/C-X-C motif chemokine receptor-4 (CXCL12/CXCR4) signaling orchestrates the recruitment of TAMCs and has emerged as a promising approach for alleviating immunosuppression. Herein, we developed an iRGD ligand-modified polymeric nanoplatform for the co-delivery of CXCR4 antagonist AMD3100 and the small-molecule immune checkpoint inhibitor BMS-1. The iRGD peptide facilitated superior BBB crossing and tumor-targeting abilities both in vitro and in vivo. In mice bearing orthotopic GL261-Luc tumor, co-administration of AMD3100 and BMS-1 significantly inhibited tumor proliferation without adverse effects. A reprogramming of immunosuppression upon CXCL12/CXCR4 signaling blockade was observed, characterized by the reduction of TAMCs and regulatory T cells, and an increased proportion of CD8+T lymphocytes. The elevation of interferon-γ secreted from activated immune cells upregulated PD-L1 expression in tumor cells, highlighting the synergistic effect of BMS-1 in counteracting the PD-1/PD-L1 pathway. Finally, our research unveiled the ability of MRI radiomics to reveal early changes in the tumor immune microenvironment following immunotherapy, offering a powerful tool for monitoring treatment responses. STATEMENT OF SIGNIFICANCE: The insufficient BBB penetration and immunosuppressive tumor microenvironment greatly diminish the efficacy of immunotherapy for glioblastoma (GBM). In this study, we prepared iRGD-modified polymeric nanoparticles, loaded with a CXCR4 antagonist (AMD3100) and a small-molecule checkpoint inhibitor of PD-L1 (BMS-1) to overcome physical barriers and reprogram the immunosuppressive microenvironment in orthotopic GBM models. In this nanoplatform, AMD3100 converted the "cold" immune microenvironment into a "hot" one, while BMS-1 synergistically counteracted PD-L1 inhibition, enhancing GBM immunotherapy. Our findings underscore the potential of dual-blockade of CXCL12/CXCR4 and PD-1/PD-L1 pathways as a complementary approach to maximize therapeutic efficacy for GBM. Moreover, our study revealed that MRI radiomics provided a clinically translatable means to assess immunotherapeutic efficacy.


Assuntos
Benzilaminas , Ciclamos , Glioblastoma , Nanopartículas , Animais , Camundongos , Antígeno B7-H1 , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Receptor de Morte Celular Programada 1/uso terapêutico , Ligantes , 60570 , Imunoterapia , Nanopartículas/uso terapêutico , Microambiente Tumoral , Linhagem Celular Tumoral
4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 322-326, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387943

RESUMO

Plerixafor, an analog of C-X-C motif chemokine receptor 4 (CXCR4), which allows the release of stem cells from the bone marrow into peripheral blood (PB) by disrupting the interaction of CXCR4 with stromal cell-derived factor-1 (SDF-1), is effective in mobilization for peripheral blood stem cells (PBSC). Due to its market approval has not been long and its high price in China, the clinical application of plerixafor is still very limited. The clinicians are actively seeking the optimal use of plerixafor to improve the success rate of PBSC collection and reduce the cost. This article reviews the latest research progress related to plerixafor application, in order to summarize the optimal use of plerixafor in autologous hematopoietic stem cell transplantation (auto-HSCT).


Assuntos
Ciclamos , Compostos Heterocíclicos , Células-Tronco de Sangue Periférico , Humanos , Mobilização de Células-Tronco Hematopoéticas , Transplante Autólogo , Benzilaminas
5.
Inorg Chem ; 63(4): 1745-1758, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38230993

RESUMO

A series of macrocyclic ligands were considered for the chelation of Pb2+: 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO3S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-10-acetamido-1,4,7,10-tetraazacyclododecane (DO3SAm), 1,7-bis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane-4,10-diacetic acid (DO2A2S), 1,5,9-tris[2-(methylsulfanyl)ethyl]-1,5,9-triazacyclododecane (TACD3S), 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetrazacyclotridecane (TRI4S), and 1,4,8,11-tetrakis[2-(methylsulfanyl)ethyl]-1,4,8,11-tetrazacyclotetradecane (TE4S). The equilibrium, the acid-mediated dissociation kinetics, and the structural properties of the Pb2+ complexes formed by these chelators were examined by UV-Visible and nuclear magnetic resonance (NMR) spectroscopies, combined with potentiometry and density functional theory (DFT) calculations. The obtained results indicated that DO4S, DO3S, DO3SAm, and DO2A2S were able to efficiently chelate Pb2+ and that the most suitable macrocyclic scaffold for Pb2+ is 1,4,7,10-tetrazacyclododecane. NMR spectroscopy gave insights into the solution structures of the Pb2+ complexes, and 1H-207Pb interactions confirmed the involvement of S and/or O donors in the metal coordination sphere. Highly fluxional solution behavior was discovered when Pb2+ was coordinated to symmetric ligands (i.e., DO4S and DO2A2S) while the introduction of structural asymmetry in DO3S and DO3SAm slowed down the intramolecular dynamics. The ligand ability to chelate [203Pb]Pb2+ under highly dilute reaction conditions was explored through radiolabeling experiments. While DO4S and DO3S possessed modest performance, DO3SAm and DO2A2S demonstrated high complexation efficiency under mild reaction conditions (pH = 7, 5 min reaction time). The [203Pb]Pb2+ complexes' integrity in human serum over 24 h was appreciably good for [203Pb][Pb(DO4S)]2+ (80 ± 5%) and excellent for [203Pb][Pb(DO3SAm)]2+ (93 ± 1%) and [203Pb][Pb(DO2A2S)] (94 ± 1%). These results reveal the promise of DO2A2S and DO3SAm as chelators in cutting-edge theranostic [203/212Pb]Pb2+ radiopharmaceuticals.


Assuntos
Ciclamos , Chumbo , Humanos , Medicina de Precisão , Quelantes/química , Ligantes
6.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255866

RESUMO

Adipose-derived stem cells (ASCs) possess therapeutic potential for ischemic brain injury, and the chemokine CXCL12 has been shown to enhance their functional properties. However, the cumulative effects of ASCs when combined with various structures of CXCL12 on ischemic stroke and its underlying molecular mechanisms remain unclear. In this study, we genetically engineered mouse adipose-derived ASCs with CXCL12 variants and transplanted them to the infarct region in a mice transient middle cerebral artery occlusion (tMCAO) model of stroke. We subsequently compared the post-ischemic stroke efficacy of ASC-mCXCL12 with ASC-dCXCL12, ASC-wtCXCL12, and unmodified ASCs. Neurobehavior recovery was assessed using modified neurological severity scores, the hanging wire test, and the elevated body swing test. Changes at the tissue level were evaluated through cresyl violet and immunofluorescent staining, while molecular level alterations were examined via Western blot and real-time PCR. The results of the modified neurological severity score and cresyl violet staining indicated that both ASC-mCXCL12 and ASC-dCXCL12 treatment enhanced neurobehavioral recovery and mitigated brain atrophy at the third and fifth weeks post-tMCAO. Additionally, we observed that ASC-mCXCL12 and ASC-dCXCL12 promoted angiogenesis and neurogenesis, accompanied by an increased expression of bFGF and VEGF in the peri-infarct area of the brain. Notably, in the third week after tMCAO, the ASC-mCXCL12 exhibited superior outcomes compared to ASC-dCXCL12. However, when treated with the CXCR4 antagonist AMD3100, the beneficial effects of ASC-mCXCL12 were reversed. The AMD3100-treated group demonstrated worsened neurological function, aggravated edema volume, and brain atrophy. This outcome is likely attributed to the interaction of monomeric CXCL12 with CXCR4, which regulates the recruitment of bFGF and VEGF. This study introduces an innovative approach to enhance the therapeutic potential of ASCs in treating ischemic stroke by genetically engineering them with the monomeric structure of CXCL12.


Assuntos
Quimiocina CXCL12 , AVC Isquêmico , Células-Tronco Mesenquimais , Transplante de Células-Tronco , Animais , Camundongos , Benzilaminas/farmacologia , Quimiocina CXCL12/genética , Ciclamos/farmacologia , Engenharia Genética , AVC Isquêmico/terapia , Células-Tronco Mesenquimais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
CNS Neurosci Ther ; 30(2): e14400, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37614198

RESUMO

AIM: Stromal cell-derived factor-1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) have a substantial role in neuronal formation, differentiation, remodeling, and maturation and participate in multiple physiological and pathological events. In this study, we investigated the role of SDF-1/CXCR4 in neural functional injury and neuroprotection after intracerebral hemorrhage (ICH). METHODS: Western blot, immunofluorescence and immunoprecipitation were used to detect SDF-1/CXCR4 expression and combination respectively after ICH. TUNEL staining, Lactate dehydrogenase assay, Reactive oxygen species assay, and Enzyme-linked immunosorbent assay to study neuronal damage; Brain water content to assay brain edema, Neurological scores to assess short-term neurological deficits. Pharmacological inhibition and genetic intervention of SDF-1/CXCR4 signaling were also used in this study. RESULTS: ICH induced upregulation of SDF-1/CXCR4 and increased their complex formation, whereas AMD3100 significantly reduced it. The levels of TNF-α and IL-1ß were significantly reduced after AMD3100 treatment. Additionally, AMD3100 treatment can alleviate neurobehavioral dysfunction of ICH rats. Conversely, simultaneous SDF-1/CXCR4 overexpression induced the opposite effect. Moreover, immunoprecipitation confirmed that SDF-1/CXCR4 combined to initiate neurodamage effects. CONCLUSION: This study indicated that inhibition of SDF-1/CXCR4 complex formation can rescue the inflammatory response and alleviate neurobehavioral dysfunction after ICH. SDF-1/CXCR4 may have applications as a therapeutic target after ICH.


Assuntos
Benzilaminas , Ciclamos , Neuroproteção , Receptores CXCR4 , Animais , Ratos , Hemorragia Cerebral , Quimiocina CXCL12/metabolismo , Regulação para Baixo , Células Estromais/metabolismo
8.
J Am Chem Soc ; 146(1): 250-262, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147793

RESUMO

We report the macrocyclic ring size-electronic structure-electrophilic reactivity correlation of mononuclear nonheme iron(III)-peroxo complexes bearing N-tetramethylated cyclam analogues (n-TMC), [FeIII(O2)(12-TMC)]+ (1), [FeIII(O2)(13-TMC)]+ (2), and [FeIII(O2)(14-TMC)]+ (3), as a model study of Rieske oxygenases. The Fe(III)-peroxo complexes show the same δ and pseudo-σ bonds between iron and the peroxo ligand. However, the strength of these interactions varies depending on the ring size of the n-TMC ligands; the overall Fe-O bond strength and the strength of the Fe-O2 δ bond increase gradually as the ring size of the n-TMC ligands becomes smaller, such as from 14-TMC to 13-TMC to 12-TMC. MCD spectroscopy plays a key role in assigning the characteristic low-energy δ → δ* LMCT band, which provides direct insight into the strength of the Fe-O2 δ bond and which, in turn, is correlated with the superoxo character of the iron-peroxo group. In oxidation reactions, reactivities of 1-3 toward hydrocarbon C-H bond activation are compared, revealing the reactivity order of 1 > 2 > 3; the [FeIII(O2)(n-TMC)]+ complex with a smaller n-TMC ring size, 12-TMC, is much more reactive than that with a larger n-TMC ring size, 14-TMC. DFT analysis shows that the Fe(III)-peroxo complex is not reactive toward C-H bonds, but it is the end-on Fe(II)-superoxo valence tautomer that is responsible for the observed reactivity. The hydrogen atom abstraction (HAA) reactivity of these intermediates is correlated with the overall donicity of the n-TMC ligand, which modulates the energy of the singly occupied π* superoxo frontier orbital that serves as the electron acceptor in the HAA reaction. The implications of these results for the mechanism of Rieske oxygenases are further discussed.


Assuntos
Ciclamos , Ferro , Ferro/química , Oxigenases , Ligantes , Biomimética , Oxigênio/química , Hidrogênio , Compostos Férricos
9.
Bioorg Chem ; 140: 106782, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37659149

RESUMO

The study investigated the structure-activity relationship of newly synthesized dye-linker-macrocycle (DLM) conjugates and the effect of each component on various biological properties, including cytotoxicity, cellular uptake, intracellular localization, interaction with DNA and photodynamic effects. The conjugates were synthesized by combining 1,8-naphthalimide and thioxanthone dyes with 1,4,7,10-tetraazacyclododecane (cyclen) and 1-aza-12-crown-4 (1A12C4) using alkyl linkers of different lengths. The results revealed significant differences in biological activity among the various series of conjugates. Particularly, 1A12C4 conjugates exhibited notably higher cytotoxicity compared to cyclen conjugates. Conjugation with 1A12C4 proved to be an effective strategy for increasing cellular uptake and cytotoxicity of small-molecule conjugates. In addition, the results highlighted the critical role of linker length in modulating the biological activity of DLM conjugates. It became clear that the choice of each component (dye, macrocycle and linker) could significantly alter the biological activity of the conjugates.


Assuntos
Antineoplásicos , Ciclamos , Transporte Biológico , Antineoplásicos/farmacologia , Corantes
10.
Food Chem ; 425: 136482, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37285624

RESUMO

Constructing a sensitive and efficient sensor for determination of metronidazole (MNZ) is crucial in food field. Herein, a new cyclotriveratrylene-based metal-organic framework (MOF), namely, [Cd6L2(cyclen)2(H2O)2] (1), was constructed by self-assembly of functionalized 5,6,12,13,19,20-hexacarboxy-propoxy-cyclotriveratrylene (H6L), 1,4,7,10-tetraazacyclododecane (cyclen) and Cd(II) cation under solvothermal condition. In 1, adjacent Cd(II) cations are linked by L6- to produce a 2D polymeric structure with carboxylate and phenolic oxygen atoms. To enhance conductivity of 1, it was combined with conducting carbon materials, including mesoporous carbon (MC), reduced graphene oxide (RGO) and multi-walled carbon nanotubes (MWCNT), respectively, producing a series of composite materials. Remarkably, electrochemical tests showed that 1@MWCNT(1:1) featured a much better electrochemical detection performance for metronidazole (MNZ) than 1@MC and 1@RGO. The linear range for the detection of MNZ is up to 0.4-500 µM and the limit of detection (LOD) for MNZ reached 0.25 µM. Importantly, the fabricated sensor 1@MWCNT(1:1) was employed for the detection of MNZ in honey and egg with satisfactory result. High-performance liquid chromatography (HPLC) validated the high accuracy of the electrochemical method for the determination of honey and egg.


Assuntos
Ciclamos , Estruturas Metalorgânicas , Nanotubos de Carbono , Metronidazol/análise , Nanotubos de Carbono/química , Estruturas Metalorgânicas/química , Cádmio , Eletrodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
11.
Nucl Med Biol ; 120-121: 108335, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37068392

RESUMO

INTRODUCTION: The chemokine receptor CXCR4 has been shown to be over-expressed in multiple types of cancer and is usually associated with aggressive phenotypes and poor prognosis. Successfully targeting and imaging the expression level of this receptor in tumours could inform treatment selection and facilitate patient stratification. METHODS: Known conjugates of AMD3100 that are specific to CXCR4 have been radiolabelled with gallium-68 and evaluated in naïve and tumour-bearing mice. Tumour uptake of the radiotracers was compared to the known CXCR4-specific PET imaging agent, [68Ga]Pentixafor. RESULTS: Ex vivo biodistribution in naïve animals showed CXCR4-mediated uptake in the liver with both radiotracers, confirmed by blocking experiments with the high affinity CXCR4 antagonist Cu2CB-Bicyclam (IC50 = 3 nM). PET/CT imaging studies revealed one tracer to have a higher accumulation in the tumour (SUVMean of 0.89 ± 0.14 vs 0.32 ± 0.11). CXCR4-specificity of the best performing tracer was confirmed by administration of a blocking dose of Cu2CB-Bicyclam, showing a 3- and 6-fold decrease in tumour and liver uptake, respectively. CONCLUSION AND ADVANCES IN KNOWLEDGE: This initial study offers some interesting insights on the impact of some structural features on the pharmacokinetics and metabolic stability of the radiotracer. Additionally, as Pentixafor only binds to human CXCR4, the development of CXCR4-targeted imaging agents that bind to the receptor across different species could significantly help with preclinical evaluation of new CXCR4-specific therapeutics.


Assuntos
Complexos de Coordenação , Ciclamos , Neoplasias , Humanos , Animais , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioisótopos de Gálio , Distribuição Tecidual , Tomografia por Emissão de Pósitrons/métodos , Peptídeos Cíclicos/farmacocinética , Receptores CXCR4/metabolismo
12.
Molecules ; 28(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36677952

RESUMO

Tetraazamacrocycles, cyclic molecules with four nitrogen atoms, have long been known to produce highly stable transition metal complexes. Cross-bridging such molecules with two-carbon chains has been shown to enhance the stability of these complexes even further. This provides enough stability to use the resulting compounds in applications as diverse and demanding as aqueous, green oxidation catalysis all the way to drug molecules injected into humans. Although the stability of these compounds is believed to result from the increased rigidity and topological complexity imparted by the cross-bridge, there is insufficient experimental data to exclude other causes. In this study, standard organic and inorganic synthetic methods were used to produce unbridged dibenzyl tetraazamacrocycle complexes of Co, Ni, Cu, and Zn that are analogues of known cross-bridged tetraazamacrocycles and their transition metal complexes to allow direct comparison of molecules that are identical except for the cross-bridge. The syntheses of the known tetraazamacrocycles and the new transition metal complexes were successful with high yields and purity. Initial chemical characterization of the complexes was conducted by UV-Visible spectroscopy, while cyclic voltammetry showed more marked differences in electronic properties from bridged versions. Direct comparison studies of the unbridged and bridged compounds' kinetic stabilities, as demonstrated by decomposition using high acid concentration and elevated temperature, showed that the cyclen-based complex stability did not benefit from cross-bridging. This is likely due to poor complementarity with the Cu2+ ion while cyclam-based complexes benefited greatly. We conclude that ligand-metal complementarity must be maintained in order for the topological and rigidity constraints imparted by the cross-bridge to contribute significantly to complex robustness.


Assuntos
Complexos de Coordenação , Ciclamos , Elementos de Transição , Humanos , Complexos de Coordenação/química , Estrutura Molecular , Raios X , Elementos de Transição/química , Etilenos/química , Cristalografia por Raios X
13.
Chem Commun (Camb) ; 59(7): 888-891, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36598060

RESUMO

Cyclam-picolinate chelators were functionalized via click chemistry with an additional carboxyl group for subsequent bioconjugation to antibodies or for the modification of the overall charge of the corresponding 64Cu-radiocomplexes. The C-aryl functionalization strategy developed here preserves the chemical properties of the radiocomplexes whilst deeply enhancing their applications within nuclear medicine.


Assuntos
Ciclamos , Compostos Heterocíclicos , Distribuição Tecidual , Compostos Heterocíclicos/química , Ácidos Picolínicos , Quelantes/química
14.
Inorg Chem ; 62(4): 1362-1376, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36490364

RESUMO

Radioisotopes of Cu, such as 64Cu and 67Cu, are alluring targets for imaging (e.g., positron emission tomography, PET) and radiotherapeutic applications. Cyclen-based macrocyclic polyaminocarboxylates are one of the most frequently examined bifunctional chelators in vitro and in vivo, including the FDA-approved 64Cu radiopharmaceutical, Cu(DOTATATE) (Detectnet); however, connections between the structure of plausible reactive intermediates and their stability under physiologically relevant conditions remain to be established. In this study, we share the synthesis of a cyclen-based, N,N-alkylated spirocyclic chelate, H2DO3AC4H8, which serves as a model for N-protonation. Our combined experimental (in vitro and in vivo) and computational studies unravel complex pH-dependent speciation and enable side-by-side comparison of N- and O-protonated species of relevant 64Cu radiopharmaceuticals. Our studies suggest that N-protonated species are not inherently unstable species under physiological conditions and demonstrate the potential of N,N-alkylation as a tool for the rational design of future radiopharmaceuticals.


Assuntos
Ciclamos , Compostos Radiofarmacêuticos/química , Radioisótopos de Cobre/química , Distribuição Tecidual , Tomografia por Emissão de Pósitrons/métodos , Quelantes/química , Alquilação
15.
J Org Chem ; 87(24): 16368-16377, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36449039

RESUMO

The tetradentate azamacrocycle cyclam (=1,4,8,11-tetraazacyclotetradecane) was studied profoundly for the coordination of transition metal ions, and the resulting complexes were investigated extensively for their catalytic performance in, e.g., O2 activation and electrocatalytic CO2 reduction. Although the successful synthesis of analogous P4 macrocycles was described earlier, no tetradentate N,P mixed 14-membered macrocycles have been prepared to date and their chemistry remains elusive. Thus, in this work, we showcase the synthesis of phospha-aza mixed cyclam-based macrocycles by selectively "exchanging" one or two secondary amines in the macrocycle isocyclam (=1,4,7,11-tetraazacyclotetradecane) with tertiary phosphines. In addition, we herein present the preparation of the corresponding nickel complexes along with their complex chemical and structural characterization to provide first coordination studies.


Assuntos
Ciclamos , Elementos de Transição , Níquel/química , Fósforo , Modelos Moleculares , Elementos de Transição/química
16.
Dalton Trans ; 51(43): 16596-16604, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36263855

RESUMO

Yb(III) complexes based on ligands with a 1,4,7-triazacyclononane (tacn) macrocyclic core were synthesised. The complexes carry a 4-methoxymethyl-substituted carbostyril chromophore that serves as a light-harvesting antenna. The ligands supply 5 nitrogen and 3 oxygen donors via 1 methylenecarboxamide and 2 picolinate donors, creating +1 charged complexes with an octadentate binding environment. The electronic properties of the picolinates are modulated by varying the substitution at the 4 position with OMe, H, Cl, or CF3. Cyclic voltammetry indicated that the tacn-based Yb(III) complexes were easier to reduce than the analogous cyclen complexes. The first reductive event is likely picolinate-centred, followed by the formation of further reduced species. Antenna excitation yielded Yb(III) luminescence in the near-infrared (NIR) region in all cases. The antenna photophysical properties were consistent with intraligand photoinduced electron transfer from the excited carbostyril to the picolinate groups. The relative quantum yields of Yb(III) luminescence were determined. The lowest value was obtained for the complex with the most efficient antenna-to-picolinate photoinduced electron transfer. Despite intraligand electron transfer quenching of the antenna, the tacn-based Yb complexes were more emissive than their cyclen analogues, highlighting the influence of the ligand structure on the luminescence properties of NIR emissive lanthanide(III) ions.


Assuntos
Ciclamos , Elementos da Série dos Lantanídeos , Ligantes , Elementos da Série dos Lantanídeos/química , Íons
17.
Molecules ; 27(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234988

RESUMO

Oxidative degradation by using reactive oxygen species (ROS) is an effective method to treat pollutants. The synthesis of artificial oxidase for the degradation of dyes is a hot spot in molecular science. In this study, a nanoscale sandwich-type polyoxometalate (POM) on the basis of a tetra-nuclear cobalt cluster and trivacant B-α-Keggin-type tungstoarsenate {[Co(C8H20N4)]4}{Co4(H2O)2[HAsW9O34]2}∙4H2O (abbreviated as CAW, C8H20N4 = cyclen) has been synthesized and structurally examined by infrared (IR) spectrum, ultraviolet-visible (UV-Vis) spectrum, X-ray photoelectron spectrum (XPS), single-crystal X-ray diffraction (SXRD), and bond valence sum (Σs) calculation. According to the structural analysis, the principal element of the CAW is derived from modifying sandwich-type polyanion {Co4(H2O)2 [HAsW9O34]2}8- with four [Co(Cyclen)]2+, in which 1,4,7,10-tetraazacyclododecane (cyclen) is firstly applied to modify POM. It is also demonstrated that CAW is capable of efficiently catalyzing the production of ROS by the synergistic effects of POM fragments and Co-cyclen complexes. Moreover, CAW can interfere with the morphology and proliferation of sensitive cells by producing ROS and exhibits ability in specifically eliminating methylene blue (MB) dyes from the solution system by both adsorption and catalytic oxidation.


Assuntos
Ciclamos , Poluentes Ambientais , Ânions , Arseniatos , Cobalto/química , Corantes , Azul de Metileno/química , Azul de Metileno/farmacologia , Oxirredutases , Polieletrólitos , Espécies Reativas de Oxigênio , Compostos de Tungstênio
18.
J Med Chem ; 65(20): 14049-14065, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36219830

RESUMO

A library of eight new fluoroquinolone-nuclease conjugates containing a guanidinoethyl or aminoethyl auxiliary pendant on the cyclen moiety was designed and synthesized to investigate their potential for overcoming the general issue of "metallodrug vulnerability" under physiological conditions. The Cu(II) and Co(III) complexes of the new designer compounds were synthesized, and their potential to operate a dynamic, intramolecular cap with DNase activity was explored. The lead Co(III)-cyclen-ciprofloxacin conjugate showed excellent in vitro hydrolytic DNase activity, which was retained in the presence of strong endogenous chelators and exhibited enhanced antibacterial activity relative to the metal-free ligand (in the absence of any adjuvants), thereby demonstrating a "proof of concept" in vitro and ex vivo, respectively, for the dynamic cap hypothesis. The lead conjugate nicked supercoiled plasmid DNA within the fluoroquinolone-gyrase-DNA ternary complex and thereby disabled the function of gyrase, a new mode of action not previously reported for any fluoroquinolone.


Assuntos
Ciclamos , Fluoroquinolonas , Fluoroquinolonas/farmacologia , Ligantes , Ciprofloxacina/farmacologia , Antibacterianos/farmacologia , Quelantes , Desoxirribonucleases
19.
Bone Marrow Transplant ; 57(12): 1827-1832, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36163427

RESUMO

Plerixafor, a CXCR4 receptor antagonist, reduces the binding and chemotaxis of hematopoietic stem cells to the bone marrow stroma, resulting in predictable peak of cluster of differentiation 34+ (CD34+) cells in the peripheral blood (PB) approximately 10 h after its administration. We developed a model that could predict the CD34+ harvest volume on the first day of apheresis (AP-CD34+) based on PB-CD34+ counts immediately prior to commencing apheresis in pediatric population. In all, data from 45 pediatric patients from the MOZAIC study who received either granulocyte colony-stimulating factor (G-CSF) alone or G-CSF plus plerixafor were included. The modeling of the data exhibited a strong and highly predictive linear relationship between the counts of PB-CD34+ cells on the first day of apheresis and AP-CD34+ cells collected on the same day. It is predicted that there are approximately 13 new collected CD34+ cells for 100 new circulating CD34+ cells before apheresis. Our predictive algorithm can be used to quantify the minimal count of PB-CD34+ cells that enables to collect at least 2 × 106 or 5 × 106 AP-CD34+ cells/kg with sufficient assurance (probability = 0.90) and can guide the use of plerixafor in patients at higher perceived risk for mobilization failure. Trial registration of MOZAIC study: ClinicalTrials.gov, NCT01288573; EudraCT, 2010-019340-40.


Assuntos
Ciclamos , Compostos Heterocíclicos , Mieloma Múltiplo , Humanos , Criança , Mobilização de Células-Tronco Hematopoéticas/métodos , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico , Mieloma Múltiplo/terapia , Benzilaminas , Fator Estimulador de Colônias de Granulócitos , Antígenos CD34/metabolismo
20.
Bioorg Med Chem ; 73: 117010, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126444

RESUMO

We describe practical methods to prepare DOTAGA-DBCO and DFO-DBCO from commercially available starting materials. DOTAGA-DBCO is available in five steps from cyclen with a 33 % overall yield at gram scale. Our synthesis of DFO-DBCO also proceeds in five steps from commercially available starting materials. These bifunctional molecules possess chelating functionality for the binding of medically important radiometals and a strained alkyne suitable for Huisgen cyclization with an azide. These syntheses represent an important step toward improved radioimmunoconjugates for imaging and therapeutic applications.


Assuntos
Ciclamos , Imunoconjugados , Alcinos/química , Azidas/química , Ciclização , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...